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AERONAUTIC SYMBOLS
1. FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol = , ) : — 7
Unit Abbrevia- | Unit Abbreviation
Length. __.._ I meter_ . .o __ ‘m foot (or mile) . _______ ft (or mi)
Time________ t second._ . _ ___.___________ 8 second (or hour)_______ sec (or hr)
Force oo F welght of 1 kllogra.m___;__ kg weight of 1 pound._____ b
Power. ... P horsepower (metric) ... _ S IS horsepower_ ___ _; _____ hp
Sneed v kilometers per hour______ kph miles per hour_______. mph
peed- - oo - meters per second.____ .. mps feet per second__,__”v___ fps-
2, GENERAL SYMBOLS - _
Wexght =mg . »  Kinematic viscosity
Standard acceleratlon of grawty -0.80665 m/s2 P Density (mass per unit volume)
or 32.1740 ft/sec? , , -~ Standard density of dry air, 0.12497 kg-m—%.g? at 15° C
Mass—E ' and 760 mm; or 0.002378 lb-ft~* sec?
g " Specific Welght of “standard”. air, 1.2255 kg/m3 or

Moment of inertia=mk?. (Indicate axis of 0.07651 Ibjcu ft -
radius of gyration k by proper subscrlpt ) '
Coeflicient of viscosity

3. AERODYNAMIC SYMEBOLS

 Area ' i Angle of setting of wings (relative to thrust line)

Area of wing B : iy Angle of stablhzer settmg (relative to thrust
Gap . - - line) '
. Span - - o - @ ° -Resultant moment
"~ Chord -~ o Q - Resultant angular velocity
- 2 o
*Aspect ratio, %, ‘ ‘ R Reynolds number, P E where l is & linear dimen-
" True air speed g : ' sion- (e.g., for an alrfoﬂ of 1.0 ft chord, 100

- mph, standard pressure at 15° C, the corre-
sponding Reymnolds number is 935,400; or for
an airfoil of 1.0 m chord, 100 mps, the corre-
sponding Reynolds number is 6, 865 ,000)

o Angle of attack

Dynamic pressure, % pV?2
Lift, absolute coefficient OL:Q% B

Drag, absolute coefficient 0,,:(%,

€ Angle of downwash
Profile drag, absolute coefficient 01,0:% B Zo : ﬁg: gi Zzzzgﬁ iﬁﬁﬁiﬁi aspect ratio
. P
D, . Angle of attack, absolute (measured from zero-

Induced drag, absolute coefficient Cp,= R

Parasite drag, absolute coeﬂi(nent ODP=% v

1ift position)
Flight-path angle

t

Cross-wind force, abéolute coefficient Cp= L%
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REPORT 1008

" A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES!®

By MANUEL STEIN and J. MAYERS

SUMMARY

A small-deflection theory that takes into account deformations
due to transverse shear is presented for the elastic-behavior
analysis of orthotropic plates of constant cylindrical curvature
with considerations of buckling included. The theory s
applicable primarily to sandwich construction.

INTRODUCTION

The usual sandwich plate as used in aircraft construction
consists of a light-weight, low-stiffness core material bonded
or riveted between two high-stiffness cover sheets. The
elastic behavior of such plates under loading cannot be
analyzed by conventional plate and shell theories in general
since these theories neglect deformations due to transverse
shear, an effect which may be of great importance in sand-
wich construction.

Many authors have considered transverse shear deflections
in analyzing the elastic behavior of flat sandwich plates by
means of small-deflection theories (see, for example,
references 1 to 4). Most of this work has been concerned
with sandwich plates of the isotropic type (for example,
Metalite, cellular-ccllulose-acetate core). In reference 3,
however, sandwich plates of the orthotropic type- are also
considered (for example, corrugated core).

The treatment of curved sandwich plates in the
literature has not been as general as that accorded flat
sandwich plates, although several specific studies of the
curved isotropic sandwich plate have been published. These
studies have covered (a) simply supported, slightly curved
isotropic sandwich plates under compressive end loading
(reference 1), (b) axially symmetric buckling of a simply
supported isotropic sandwich cylinder in compression
(reference 1), and (¢) a nonbuckling small-deflection theory
for isotropic sandwich shells which takes into account not
only deflections due to shear but also the effects of core
compression normal to the faces (reference 5).

The need for a general theory for curved sandwich plates
which is applicable to orthotropic as well as isotropic types
and which includes both nonbuckling and buckling effects has
led to the development of the theory presented in this report.
This theory, which takes into account deflections due to

1 Supersedes NACA TN 2017, “A Small-Deflection Theory for Curved Sandwich Plates’”’ by Manuel Stein and J. Mayers, 1950.
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transverse shear, covers those types of sandwich plates
having constant cylindrical curvature, similar properties on
the average above and below the middle surface, and
essentially constant core thickness.

SYMBOLS

D, flexural stiffness of isotropic sandwich plate,
inch-pounds 2’3 t_huz))

D flexural stiffness of ordinary plate, inch-pounds

B¢
12(1— p.2)

D, D, flexural stiffnesses of orthotropic plate in axial
and circumferential directions, inch-pounds

D,, twisting stiffness of orthotropic plate in
xy-plane, inch-pounds

D, D, transverse shear stiffnesses of orthotropic

’ plate in axial and circumferential directions,

pounds per inch

Dy, transverse shear stiffness of isotropic sandwich

plate, pounds per inch
Young’s modulus for ordinary plate, pounds
per square inch
E, Young’s modulus for faces of isotropic sand-
wich plate, pounds per square inch

E,E, extensional stiffness of orthotropic plate in
axial and circumferential directions, pounds
per inch

Gy shear stiffness of orthotropic plate in zy-plane,
pounds per inch

Lg,Lg™, Lp, V2, V4, V4 mathematical operators defined

in section entitled ‘‘Theoretical Derivations”

M, M, bending moments on plate cross sections
perpendicular to z- and y-axes, respectively,
inch-pounds per inch

M, twisting moments on cross sections perpendic-
ular to z- and y-axes, inch-pounds per inch

N, N, resultant normal forces in z- and y-directions,
pounds per inch

N, resultant shearing force in zy-plane, pounds
per inch

q lateral loading, pounds per square inch

1




N

Q:, Qy resultant shearing forces in yz-plane and
zz-plane, respectively, pounds per inch

h depth of isotropic sandwich plate measured
between middle surfaces of faces, inches

r constant radius of curvature of plate, inches

t thickness of ordinary plate, inches

1. thickness of face of isotropic sandwich plate,
inches

u, v, W displacements in z-, y-, z-directions, respec-
tively, of a point in middle surface of
plate, inches

x,Y, 2 rectangular coordinates

Yy shear strain in zy-plane

€2, €y normal strains in axial and circumferential
directions

© Poisson’s ratio for ordinary plate

Bz, My Poisson’s ratios for orthotropic plate, defined
in terms of curvatures

Wiy Poisson’s ratios for orthotropic plate, defined

in terms of normal strains

THEORETICAL DERIVATIONS
GENERAL THEORY

In developing the equations of equilibrium for the ortho-
tropic curved plate element, shown in figure 1, the basic
assumptions made are that the materials are elastic, that the
deflections are small compared with the plate thickness,
and that the thickness is small compared with the radius of
curvature. The last assumption implies that the shear
forces N,, and N,, are equal and that the twisting moments
M., and M, are equal.

Eleven basic equations.—As in ordinary curved-plate
theory, 11 equations exist for orthotropic curved plates
(considering deflections due to shear) from which the dis-
placements acting in the plate can be determined. The 11
equations consist of 5 equilibrium equations, 3 equations

r

F16URE 1.—Forces and moments acting on curved plate element.
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lating resultant forces to strains; and 3 equations relating
resultant moments with curvatures and twist.

The first five equations, expressing force equilibrium in
the z- and y-directions, moment equilibrium about the z-
and y-axes, and force equilibrium in the z-direction, are

uﬁJ—aN’” =0 (1a)
oz ' dy A
N, aN
oM, oM,
) — =0 le
Q 5y (10)
DZ\I aM =0 ad)
Ky ay | ax -V ALy

0Q:  0Qy bw)
S 3o TV 5 2+N< +2%) 42N, azayﬂ 0 (le)
It should be noted that in these equations, higher-order
terms have been neglected in accordance with considerations
similar to those of reference 6.

For the orthotropic curved plate, the relations between

the resultant mlddle—smface f01ces and the middle-surface
strains are (see appendix)

Ex Dv
Nl [ (T e

_E, o w, , Ou
M=o, —&J—7+#’a> @b)
No= G (32451 (20)

From reference 3, the corresponding relations between
resultant moments and curvatures and twist are

__. D i__l_ aQr azw__l, 24,
M= I —ppy | O? + < ay Q a?/ )]
(3a)
__ D, [ow_1 06 w1 0,
My=— 1 — ey | 02 Do L oy T 52 Dy oz >:|

(3b)

1 aQ_,_, 1 0@,
.r!/ Dz,/( axay DQ Ox DQ ay> (30)

Equations (1), (2), and (3) are the 11 basic equations neces-
sary for determining the forces, moments, and deflections
acting in the plate. The number of equations can be reduced
to five, however, by substituting equations (2) and (3) into
equations (1). In this manner, five differential equations are
obtained for determining the resultant transverse shear
forces @, and @, and the displacements u, », and w.
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The 11 basic equations presented are not restricted to de-
flection problems alone but may be applied to buckling prob-
lems as well by considering the changes that occur during
buckling and modifying equations (1) accordingly. For
equilibrium of the curved plate element after buckling,
equations (1) can ‘be written with N,, Ny, Ny, @, @, M.,
M., M, and w replaced by Np+Ns, NuyytNu,---,
-wy—-wy; Tespectively, where the subscript 0 refers to values
prior to buckling and the subscript 1 refers to changes in
these values that occur during buckling. For equilibrium
of the curved plate element prior to buckling the following
equations apply:

ONy, | ONy,

x + QY =0

ON,, 0Ny
oy or
oM., OM,,,():

&3z oy
oM, oM,

Quy— oy | oz =0
5on 0Qy, o2 wo R DMy
sy Ny S+ N (F+52 A L)+ 2N, o % g

Subtracting the previous ecquations from equations (1)
(as modified) gives the following equilibrium equations which
apply to buckling problems:

ON,, ONy,
5z T oy =0 (4a)
ON,, DN,[,,1
57t o =0 (4b)
oM, oM, 0
Qe — or ' dy (4c)
oM, oM,
Qul—W 5z Y (4d)
0Q, bel O'w, o? (wo—}—w]) %w,
'ax + + Zg ax +N.’Cl + 1/0 ayv+
1, 0° *(w
o [?Jr (w0+wl)]+2N’”o saoy T N (a;érywl)zo
(4e)
O%w 2w O%w
— 1 and NV, 1
In equation (4e) the terms NV, 1oz L o an ey
may be neglected since they will be small compared with
O*w, O*w, %,

Nz, S » Ny, oy ——5» and NWoa b - Also, if the deflection

prior to buckling is zero or constant as occurs for many
problems (for example, axial compression, hydrostatic pres-
sure), all derivatives of w, vanish. For this type of problem
equation (4e) becomes

sz oQ o*w, - O%w
1+ ay”l_‘..Nxo >z 2+N"o by1+ ”1+ N‘Wo bxby

(4e)

The six equatbions relating changes in middle-surface re-
sultant forces with buckling strains and changes in moment
with buckling distortions are identical with equations (2)
and (3) with the subscript 1 added to N,, Ny, Ny Qu Q)
M., M,,, M,, u, v, and w.

The 11 equations, given by equations (4) and equations
(2) and (3) (with subseript 1), apply to buckling problems
in general (with equation (4e) or (4e’) as required) and can
be used to obtain the critical values of the loads acting on
the plate. As is shown in the next section, however, for the
case In which the deflection prior to buckling is zero or con-
stant, the 11 equations can be suitably combined to yield 3
equations in wy, @, and @,;, & form convenient for applica-
tion to plates of sandwich construction.

Reduction to three equations for buckling problems in
which the deflection prior to buckling is zero or constant.—
The reduction of the 11 equations to 3 equations in w,, @,
and @, is achieved in several steps as follows:

By differentiating equation (4c) with respect to z, equa-
tion (4d) with respect to y, and adding the results to obtain
the rclationship

0Q:,  0Qy szrl_ O*M,, O ]\L,l
ox oy~ ox? dzoy | oyt
equation (4e’) may be rewritten as
O*M,, M,  0* M, N,,] %,
N,
522 2 ozoy T oy e gt
O? w 0? Wy

Nl’o oy? +2NIV0 dz ayzo (4e’")

Next, equations (2) and (3) (with subseript 1) are substituted
into the equilibrium equations (4a) to (4d) and (4e”’) to give

bul 32'01 _&awl aul a’Dl )_
+#u dz Oy 7 b—x+(1 uzhe 1/) azay
azvl 1 awl 02 ’le r s b 7)1 0 Uy )_
D, /%w, 1 b“’Qzl Pw,  uy szu1>
Q’”l—l—l—y,y,, ox® _m Ty dz oy? Djﬁ oz Oy +
1 Rw, 1 Q1 sz,,l)“
2 Dy (2 dx0y: Dy, byQ'_D—QV oz Oy =0 @

Mm.\
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D o? w; 1 'aiQII}_‘_” O‘”’wl QW  Hy 91%)_'_

Ut T Sy~ D, oy
0?Q), 0?
@y 1 ﬁ”i)___o (8)

lD <2 0%w, 1 :
2 = bxzby DQ ox ay DQ ox?

Loy (o =5 4 aéi‘> G
1/0 aa;/vl—}— er/o ba;qgéj E_Q—I [1 —%Iuy a;:?;l
0% Q.
1 —uz#y+ ) dz gyl“’]_
3 3
D];u 1 — Mzly aa:l?lll+<l _#zﬂu+ DI”) %{ng/]: 0

where Lj is the linear differential operator defined by

Dg; IJty z I‘LID > i

Lo= 1_',“1#1/ ax4 i (1 ,U-z,u1/+2Dw+ 1—pruy axi)a.?/z_r
D, o
1 —papy a?/4

At this point, six equations have been eliminated and, there-
fore, five equations remain—equations (5), (6), (7), (8), and
(9 in uy, vy, w;, @z, and @,

A further reduction in the number of equations and un-
knowns is effected by first solving equations (5) and (6) to
obtain relations from which %, and », can be determined
and then substituting for u; and »; in equation (9). The
expressions obtained by solving equations (5) and (6), in
accordance with the rules governing the multiplication of
linear operators, are

G,, O*w, G, Ow
R 1__ My i
rLguy=p’y E, 2z 7, OF Oy (10)
and
o o ’ ny aa,I'Dl QIE a?}?l
SR T

where Ly is the lincar differential operator defined by

_ Gy O , y G\ o Gry O
Lp= E, ox 4+<1 ’qu FvE, 0120y2+E oyt

The relationships given by equations (10) and (11) may
be written in a form more suitable for substitution into
cquation {9) by differentiating equation (10) with respect
to z, equation (11) with respect to y and then, symbolically

solving the equations for %1; and y; respectively, to give

(12)

ou_ .~1(&i Gy O'w; _ Gy O'wy )
ox z r B, ox* rE,ox*0y*

G’Il, bwl)
I E, oyt (13)

is defined by Ly Y(Lgw)=Lg(Lz"'w))=w,. The
is similar to the inverse operator v—*

7 Gfl’
Ovl . _1<1—# ”‘Ey_riaAiwl
oy O F r ox2dy?

where Ly™?
inverse operator Lg™?

defined in reference 7, and, as is shown subsequently, Lz™!
reduces to y~* for the special case of theisotropic plate.

01)1

Substituting the expressions for ba_u; and M from equations

(12) and (13) into equation (9) and replacing % by

Lyt (LE u%) results in the following equation:

G: 0! o? 0 0?
Lpwi+- yLL' w] < %o a;Ul 1/0 a;)ol‘f'Z Wy qgl -
L D, o Q’”x _&sz, OSQII
Tz g ) — 1 |
DQz 1—pzuy, "z 1—uzpy ox 0y?

1 D, DSQIII 3le 1_
_Dju 1 —pzuy ay3 +<1‘—#x#y+ >a 0 .J_O (14)

At this stage, the original 11 equations have been reduced
to the 3 equations (14), (7), and (8), in the 3 unknowns
Wi, er, and le-

For most problems, equations (14), (7), and (8), together
with proper boundary conditions, can determine the elastic
stability criteria for an orthotropic curved plate subjected to
middle-surface loadings. It should be noted, however, that
the three equations are not sufficient if boundary conditions
are specified on the displacements %, and »;.  For boundary
conditions on u; and »;, as well as w,, cquations (10) and
(11) must also be employed. When boundary conditions
arc not specified on u; and », (the case when only equations
(14), (7), and (8) are used), certain boundary conditions are
implied, nevertheless, by equations (10) and (11), consistent
with the expression for w,. A discussion of similar implied
boundary conditions on u, and v, is included in reference 7.

SPECIAL CASES OF BUCKLING EQUATIONS

Isotropic curved sandwich plate with non-direct-stress-
carrying core.—For the isotropic sandwich plate with non-
direct-stress-carrying core, the physical constants bear the
following relationships to those of the orthotropic plate:

DQI:DQ,,:DQ
pr=py=p's=p =
D=D,=Dy(1—pu?
Dy=D(1—u)
E=FE,=2E¢,
G2t

These relationships permit equation (14) to be simplified as

follows:
21‘,SEs _y 0 0? o? o]
Diviwn = VS (N o 57 TN awH ”Obr@g;)
D. (% bel)_
Y 5y (15)
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where
. 0
V=0 oy

a4

4 .
V= am4+2 o2 ay2+ay

and V™*is deﬁned by V L (Viwy) = V“ (V4w =w;.

In thls case, however equations (7) and (8) are not needed
Qzl Qlll
Pz oy
be found more conveniently from equation (4e).
equation (4e’), therefore,

20, 20, (N,
ox

to obtain the quantity , since this quantity can

From
o%w, >

Yo dx Oy

in equation (15) gives

o'w, D Ny
—4 1 s T 1)
v 0124 DQ v r )

_Qf . o*w, O%w,
7 %) (N SN, o

%,

fog
N SNy 7

A

Substituting for aQI'-{— .

2t .
D3V4wl+ }‘2 £

bwl
Ty N ay> 0 (16)

The term — N, /r, Which appoals in equation (14) for the
4
LE“I b ——, reduces to —trli v aa:il
for the casc of the 1sot10p10 plate. If this result is used in
equation (16), the equation of equilibrium for the isotropic
curved sandwich plate with non-direct-stress-carrying core
becomes

D 2t I, Otw
4 . s 2 _‘x s —4 & _l_
D,V ’w[—{—(l DQV>[ 2 \Y% ozt

O%wy,

5, T24V:

orthotropic plate as

o%w
(N,O WI+N”0 Sy

” abngl )] 0 (a7)

If the radius is taken infinite, equation (17) becomes
equivalent to equation (71) of reference 4.

Isotropic curved plate, deflections due to shear neg-
lected.—The present theory can be reduced to a known
theory for ordinary curved plates by appropriate substitu-
tions for the physical constants. For an ordinary plate, the
physical constants become

0= Do, = = (no shear deflections)

l“xzﬂv:#,x:#’y:#
Do=D,=D (1—u?)

Dzy D (1 —P‘)

E,= E,=Ft
Et

= 3a+w

Upon substitution of these constants into equation (14),
the resulting equation becomes independent of equations
(7) and (8) and the equilibrium equation of the ordinary
curved plate, therefore, is given by

o o o >
Dv4w‘+ V_4 = (N’O 3a7 TN aw;“LZN""o bx%g;/>~

(18)

Equation (18) is equivalent to the modified equilibrium
equation for ordinary curved plates presented in reference 7.

CONCLUDING REMARKS

A theory has been developed for analyzing the elastic
behavior of orthotropic curved plates, that takes into account
the effect of deflections due to shear and requires the use of
12 physical constants to characterize the plate. Seven of
the physical constants appearing in the equations of equi-
librium are directly associated with the flat-orthotropic-
plate theory presented in NACA Rep. 899. The remaining
five physical constants arc included in the present theory
to account for the stretching under loading of the middle
surface of the curved plate.

For each type of orthotropic plate, the 12 physical con-
stants may be evaluated either from the geometry of the
cross sections and the propertics of the materials used or
by direct tests conducted on sample specimens. Because
two reciprocal relationships exist (see appendix), only 10
of the constants need be determined independently.

The theory presented in this report does not take into
account the compressibility of the sandwich plate in a direc-
tion normal to the faces. Such an cffect does not enter into
flat-sandwich-plate theory but might be of importance in
certain types of curved sandwich plates where the elastic
constants of thé core material are small compared with
those of the face material.

For practical sandwiches of the end-grain-balsa or
corrugated-core types, order-of-magnitude considerations lead
to the conclusion that the effect of core compressibility will
be negligible as regards both buckling loads and deflections.
For sandwiches with less stiff cores—for example, cellular
cellulose acetate—the effect of core compressibility will be
more important. Even for such cores, however, in the case
of all the numerical examples given in NACA TN 1832, the
effect of core compressibility is negligible in comparison with
the effect of transverse shear deformations for sandwich-type
circular cylindrical shells., The present theory, in which the
core is assumed to be incompressible in a direction normal to
the faces, appears, therefore, to be applicable to most prac-
tical sandwich plates.

LaNGLEY AERONAUTICAL LLABORATORY,
NarroNaL Apvisory COMMITTEE FOR AERONAUTICS,
Langrey Fieup, VaA., November 22, 1949.




| APPENDIX
DERIVATION OF MIDDLE-SURFACE FORCE-DISTORTION RELATIONSHIPS

The orthotropic curved plate (effects of transverse shear
being considered) is characterized by 12 physical constants,
7 of which are associated with flat plates, as presented in
reference 3. The remaining five constants enter the present
theory because of the additional stretching strain developed
under loading in the middle surface of the curved plate. In
this appendix the five additional constants are defined, and

AR
expressions for the resultant forces, involving these con-

stants, are derived.

Physical constants.—The seven flat-plate constants are the .

flexural stiffnesses D, and D,, the flexural Poisson ratios u
and u,, the twisting stiffness D,,, and the transverse shear
stiffnesses Do, and Do, As derived in reference 3, the first

four of these constants are related by
ﬂzDv: :uyDz

The five additional constants appearing in the curved-plate
theory are the extensional stiffnesses K, and E,, the
extensional Poisson ratios u’, and u’;, and the shearing
stiffness @,,. The first four constants are found by a
procedure similar to that used in reference 3 to be related by

M’zEy: lJ/wEx

As a result of these two reciprocal relationships, only 10 of
the 12 physical constants need be determinedindependently.

The five additional physical constants are defined in the
same manner as the flat-plate constants of reference 3—-
that is, by considering the effect of imposing particular
loading conditions on the element shown in figure 1. To
obtain E,, for example, only the middle-surface forces N,
are assumed to be acting on the element. As a result of
this loading, the strain e, is induced in the middle surface.
The stiffness E, is then defined by the relation Ezz&

€z
when only N, is acting.

The Poisson effeet of the forces IV, acting on the element
is to introduce a strain e, negative with respect to e, in the
middle surface. The constant u’, is then defined by the
relation ,u'x=——%/ when only NV, is acting.

T

In a similar manner, E,, u’), and G, are defined as
N, . ,
E, —e— when only N, is acting, p’,=
v
Ny

Yzy

€ .
—Z when only N, is
€y

acting, and Gp=

Resultant forces.—The relations between the elastlc
middle-surface strains and forces, sati

definitions, can be written as

-+
=
‘Jl
=
b
ot o

_N. , N,
“=FE,  H'E,
5112%7;{_ % > (A1)
Ly Ay
Ny
'Yzyzgz” J

The three strain equations can be solved for N, N,, and
N, in terms of the strains to give

E,
N,= 1__ (fz_*_li]/fy)

E, , A2
N”:_l———y]’/,;?l,(e”—{_“’e’) (42)
Nzy Gzy'Yzz/

Substituting the expressions for the middle-surface strains
of a cylindrical section in terms of middle-surface displace-
ments

_ou
“=dz
_Qv_w
Yoy r
au ov
+bx

into equation (A2) gives

E, bv W
No= 1_.“'1#1/ ax—*—'u” >]
___E, jov ou
A AT +“’ax> [ @9
NG (o450
v Y ax J

These equations are used in the derivation of the equilib-
rium equations.
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Foree
%para!l(;] . . « - |- Linear
i 3 Sym- | Y0 aXis : . Sym- Positive Designa- |Sym-| (compo-
Designation bol | symbol | Designation bol direction tion bol |nent along Angular
: - axis)
Longitudinal..__._.| X X Rolling_____.. L Y Roll.____._.. ¢ u P
Lateral .. ____. Y Y Pitching.. ... M Z——X | Piteh..___.__ ] v q
Normal ... z Z Yawing. ... N X—Y Yaw ... W w y
Absolute coefficients of moment ‘ Angle of set of control surface (relative to neutral
L N posltlon), (Indicate surface by proper subscnpt )
01— 0 0n="_"
gbS qcS gbS
(ro]lmg) (pltchma) (yawing)
4. PROPELLER SYMBOLS
D Diameter P

Geometric pitch P Power, absolute coefficient O'p=,W175

P
p/D  Pitch ratio
v’ Inflow velocity

. 5 oVB
C, Speed-power coefficient= \/ Pz
V, Slipstream velocity

7 ] Efficiency
T Thrust, absolute coefficient C'T— D n Revolutions per second, rps
e Eiffestive helix anglo=tan~( 50 )
© Torque, absolute coeﬁiment OQ_;nﬁﬁ ® ective helix angle=1an A 5rrn
5. NUMERICAL RELATIONS
1 hp="76.04 kg-m/s=550 ft-1b/sec 1 1b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 1b
1 mph=0.4470 mps 1 mi=1,609.35 m=5,280 fb

1 mps=2.2369 mph 1 m=3.2808 ft




